Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 709: 149839, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38564943

RESUMO

Single-domain VHH antibody is regarded as one of the promising antibody classes for therapeutic and diagnostic applications. VHH antibodies have amino acids in framework region 2 that are distinct from those in conventional antibodies, such as the Val37Phe/Tyr (V37F/Y) substitution. Correlations between the residue type at position 37 and the conformation of the CDR3 in VHH antigen recognition have been previously reported. However, few studies focused on the meaning of harboring two residue types in position 37 of VHH antibodies, and the concrete roles of Y37 have been little to be elucidated. Here, we investigated the functional states of position 37 in co-crystal structures and performed analyses of three model antibodies with either F or Y at position 37. Our analysis indicates that Y at position 37 enhances the dissociation rate, which is highly correlated with drug efficacy. Our findings help to explain the molecular mechanisms that distinguish VHH antibodies from conventional antibodies.


Assuntos
Antígenos de Grupos Sanguíneos , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Anticorpos
2.
Sci Rep ; 14(1): 5374, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438508

RESUMO

In Gram-positive bacteria, sophisticated machineries to acquire the heme group of hemoglobin (Hb) have evolved to extract the precious iron atom contained in it. In the human pathogen Streptococcus pyogenes, the Shr protein is a key component of this machinery. Herein we present the crystal structure of hemoglobin-interacting domain 2 (HID2) of Shr bound to Hb. HID2 interacts with both, the protein and heme portions of Hb, explaining the specificity of HID2 for the heme-bound form of Hb, but not its heme-depleted form. Further mutational analysis shows little tolerance of HID2 to interfacial mutations, suggesting that its interaction surface with Hb could be a suitable candidate to develop efficient inhibitors abrogating the binding of Shr to Hb.


Assuntos
Hemeproteínas , Humanos , Hemeproteínas/genética , Streptococcus pyogenes/genética , Heme , Reconhecimento Psicológico , Ferro
3.
J Biol Chem ; 300(2): 105640, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199569

RESUMO

Monoclonal antibodies are one of the fastest growing class of drugs. Nevertheless, relatively few biologics target multispanning membrane proteins because of technical challenges. To target relatively small extracellular regions of multiple membrane-spanning proteins, synthetic peptides, which are composed of amino acids corresponding to an extracellular region of a membrane protein, are often utilized in antibody discovery. However, antibodies to these peptides often do not recognize parental membrane proteins. In this study, we designed fusion proteins in which an extracellular helix of the membrane protein glucose transporter 1 (Glut1) was grafted onto the scaffold protein Adhiron. In the initial design, the grafted fragment did not form a helical conformation. Molecular dynamics simulations of full-length Glut1 suggested the importance of intramolecular interactions formed by surrounding residues in the formation of the helical conformation. A fusion protein designed to maintain such intramolecular interactions did form the desired helical conformation in the grafted region. We then immunized an alpaca with the designed fusion protein and obtained VHH (variable region of heavy-chain antibodies) using the phage display method. The binding of these VHH antibodies to the recombinant Glut1 protein was evaluated by surface plasmon resonance, and their binding to Glut1 on the cell membrane was further validated by flow cytometry. Furthermore, we also succeeded in the generation of a VHH against another integral membrane protein, glucose transporter 4 (Glut4) with the same strategy. These illustrates that our combined biochemical and computational approach can be applied to designing other novel fusion proteins for generating site-specific antibodies.


Assuntos
Proteínas de Membrana Transportadoras , Peptídeos , Anticorpos Monoclonais , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/imunologia , Imunização , Proteínas Recombinantes/química , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/imunologia
4.
Front Cell Dev Biol ; 11: 1147625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936982

RESUMO

Introduction: Proline/arginine-rich end leucine-rich repeat protein (PRELP), is a small secreted proteoglycan expressed by pericytes and vascular smooth muscle cells surrounding the brain vasculature of adult mouse. Methods: We utilised a Prelp knockout (Prelp -/-) mouse model to interrogate vasculature integrity in the brain alongside performing in vitro assays to characterise PRELP application to endothelial cells lines. Our findings were supplemented with RNA expression profiling to elucidate the mechanism of how PRELP maintains neurovasculature function. Results: Prelp -/- mice presented with neuroinflammation and reducedneurovasculature integrity, resulting in IgG and dextran leakage in the cerebellum and cortex. Histological analysis of Prelp -/- mice revealed reducedcell-cell integrity of the blood brain barrier, capillary attachment of pericytes andastrocyte end-feet. RNA-sequencing analysis found that cell-cell adhesion andinflammation are affected in Prelp -/- mice and gene ontology analysis as well as gene set enrichment analysis demonstrated that inflammation related processes and adhesion related processes such as epithelial-mesenchymal transition and apical junctions were significantly affected, suggesting PRELP is a regulator of cell-cell adhesion. Immunofluorescence analysis showed that adhesion junction protein expression levels of cadherin, claudin-5, and ZO-1, was suppressed in Prelp -/- mice neurovasculature. Additionally, in vitro studies revealed that PRELP application to endothelial cells enhances cell-cell integrity, induces mesenchymal-endothelial transition and inhibits TGF-ß mediated damage to cell-cell adhesion. Discussion: Our study indicates that PRELP is a novel endogenous secreted regulator of neurovasculature integrity and that PRELP application may be a potential treatment for diseases associated with neurovascular damage.

5.
Protein Sci ; 32(12): e4827, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916305

RESUMO

The ß-hairpin conformation is regarded as an important basic motif to form and regulate protein-protein interactions. Single-domain VH H antibodies are potential therapeutic and diagnostic tools, and the third complementarity-determining regions of the heavy chains (CDR3s) of these antibodies are critical for antigen recognition. Although the sequences and conformations of the CDR3s are diverse, CDR3s sometimes adopt ß-hairpin conformations. However, characteristic features and interaction mechanisms of ß-hairpin CDR3s remain to be fully elucidated. In this study, we investigated the molecular recognition of the anti-HigB2 VH H antibody Nb8, which has a CDR3 that forms a ß-hairpin conformation. The interaction was analyzed by evaluation of alanine-scanning mutants, molecular dynamics simulations, and hydrogen/deuterium exchange mass spectrometry. These experiments demonstrated that positions 93 and 94 (Chothia numbering) in framework region 3, which is right outside CDR3 by definition, play pivotal roles in maintaining structural stability and binding properties of Nb8. These findings will facilitate the design and optimization of single-domain antibodies.


Assuntos
Cadeias Pesadas de Imunoglobulinas , Região Variável de Imunoglobulina , Humanos , Região Variável de Imunoglobulina/química , Cadeias Pesadas de Imunoglobulinas/química , Sequência de Aminoácidos , Regiões Determinantes de Complementaridade/química , Anticorpos
6.
Protein Sci ; 32(12): e4831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924310

RESUMO

Protein aggregations decrease production yields and impair the efficacy of therapeutics. The CH2 domain is a crucial part of the constant region of human IgG. But, it is also the least stable domain in IgG, which can result in antibody instability and aggregation problems. We created a novel mutant of the CH2 domain (T250C/L314C, mut10) by introducing a disulfide bond and expressed it using Pichia pastoris. The mut10 variant exhibited enhanced thermal stability, resistance to enzymatic degradation, and reduced aggregation in comparison to the original CH2 domain. However, it was less stable than mut20 (L242C/K334C), which is the variant prepared in a previous study (Gong et al., J. Biol. Chem., 2009). A more advanced mutant, mut25, was created by combining mut10 and mut20. Mut25 artificially contains two disulfide bonds. The new mutant, mut25, showed enhanced thermal stability, increased resistance to enzymatic digestion, and reduced aggregation in comparison to mut20. According to our knowledge, mut25 achieves an unprecedented level of stability among the humanized whole CH2 domains that have been reported so far. Mut25 has the potential to serve as a new platform for antibody therapeutics due to its ability to reduce immunogenicity by decreasing aggregation.


Assuntos
Saccharomycetales , Humanos , Domínios Proteicos , Imunoglobulina G/química , Dissulfetos/química , Pichia/genética , Pichia/metabolismo
7.
Sci Rep ; 13(1): 16561, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783706

RESUMO

Antibody-drug conjugates are powerful tools for combatting a wide array of cancers. Drug conjugation to a therapeutic antibody often alters molecular characteristics, such as hydrophobicity and effector function, resulting in quality deterioration. To develop a drug conjugation methodology that maintains the molecular characteristics of the antibody, we engineered a specific peptide for conjugation to the Fc region. We used trastuzumab and the chelator (DOTA) as model antibody and payload, respectively. Interestingly, peptide/DOTA-conjugated trastuzumab exhibited enhanced antibody-dependent cellular cytotoxicity (ADCC) and increased thermal stability. Detailed structural and thermodynamic analysis clarified that the conjugated peptide blocks the Fc dynamics like a "wedge." We revealed that (1) decreased molecular entropy results in enhanced ADCC, and (2) blockade of Fc denaturation results in increased thermal stability. Thus, we believe that our methodology is superior not only for drug conjugation but also as for reinforcing therapeutic antibodies to enhance ADCC and thermal stability.


Assuntos
Imunoglobulina G , Receptores de IgG , Citotoxicidade Celular Dependente de Anticorpos , Trastuzumab/farmacologia , Fragmentos Fc das Imunoglobulinas , Peptídeos/farmacologia
8.
Biochem Biophys Res Commun ; 682: 174-179, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37820452

RESUMO

Interleukin-11 (IL-11) is a member of the interleukin-6 (IL-6) family of cytokines. IL-11 is a regulator of multiple events in hematopoiesis, and IL-11-mediated signaling is implicated in inflammatory disease, cancer, and fibrosis. All IL-6 family cytokines signal through the signal-transducing receptor, glycoprotein 130 (gp130), but these cytokines have distinct as well as overlapping biological functions. To understand IL-11 signaling at the molecular level, we performed a comprehensive interaction analysis of the IL-11 signaling complex, comparing it with the IL-6 complex, one of the best-characterized cytokine complexes. Our thermodynamic analysis revealed a clear difference between IL-11 and IL-6. Surface plasmon resonance analysis showed that the interaction between IL-11 and IL-11 receptor α (IL-11Rα) is entropy driven, whereas that between IL-6 and IL-6 receptor α (IL-6Rα) is enthalpy driven. Our analysis using isothermal titration calorimetry revealed that the binding of gp130 to the IL-11/IL-11Rα complex results in entropy loss, but that the interaction of gp130 with the IL-6/IL-6Rα complex results in entropy gain. Our hydrogen-deuterium exchange mass spectrometry experiments suggested that the D2 domain of gp130 was not involved in IL-6-like interactions in the IL-11/IL-11Rα complex. It has been reported that IL-6 interaction with gp130 in the signaling complex was characterized through the hydrophobic interface located in its D2 domain of gp130. Our findings suggest that unique interactions of the IL-11 signaling complex with gp130 are responsible for the distinct biological activities of IL-11 compared to IL-6.


Assuntos
Interleucina-11 , Interleucina-6 , Receptor gp130 de Citocina/metabolismo , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Citocinas , Glicoproteínas
9.
J Biol Chem ; 299(10): 105254, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716701

RESUMO

Listeriosis, caused by infection with Listeria monocytogenes, is a severe disease with a high mortality rate. The L. monocytogenes virulence factor, internalin family protein InlA, which binds to the host receptor E-cadherin, is necessary to invade host cells. Here, we isolated two single-domain antibodies (VHHs) that bind to InlA with picomolar affinities from an alpaca immune library using the phage display method. These InlA-specific VHHs inhibited the binding of InlA to the extracellular domains of E-cadherin in vitro as shown by biophysical interaction analysis. Furthermore, we determined that the VHHs inhibited the invasion of L. monocytogenes into host cells in culture. High-resolution X-ray structure analyses of the complexes of VHHs with InlA revealed that the VHHs bind to the same binding site as E-cadherin against InlA. We conclude that these VHHs have the potential for use as drugs to treat listeriosis.

10.
Protein Sci ; 32(9): e4745, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550885

RESUMO

Antibodies are used for many therapeutic and biotechnological purposes. Because the affinity of an antibody to the antigen is critical for clinical efficacy of pharmaceuticals, many affinity maturation strategies have been developed. Although we previously reported an affinity maturation strategy in which the association rate of the antibody toward its antigen is improved by introducing a cluster of arginine residues into the framework region of the antibody, the detailed molecular mechanism responsible for this improvement has been unknown. In this study, we introduced five arginine residues into an anti-hen egg white lysozyme antibody (HyHEL10) Fab fragment to create the R5-mutant and comprehensively characterized the interaction between antibody and antigen using thermodynamic analysis, X-ray crystallography, and molecular dynamics (MD) simulations. Our results indicate that introduction of charged residues strongly enhanced the association rate, as previously reported, and the antibody-antigen complex structure was almost the same for the R5-mutant and wild-type Fabs. The MD simulations indicate that the mutation increased conformational diversity in complementarity-determining region loops and thereby enhanced the association rate. These observations provide the molecular basis of affinity maturation by R5 mutation.


Assuntos
Complexo Antígeno-Anticorpo , Antígenos , Conformação Proteica , Antígenos/química , Complexo Antígeno-Anticorpo/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/química , Cristalografia por Raios X
11.
Biochem Biophys Res Commun ; 676: 141-148, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37516031

RESUMO

Cation diffusion facilitators (CDFs) are a large family of divalent metal transporters with broad specificities that contribute to intracellular metal homeostasis and toxicity in bacterial pathogens. Streptococcus pyogenes (Group A Streptococcus [GAS]) expresses two homologous CDF efflux transporters, MntE and CzcD, which selectively transport Mn and Zn, respectively. We discovered that the MntE- and CzcD-deficient strains exhibited a marked decrease in the viability of macrophage-differentiated THP-1 cells and neutrophils. In addition, the viability of mice infected with both deficient strains markedly increased. Consistent with a previous study, our results suggest that MntE regulates the PerR-dependent oxidative stress response by maintaining intracellular Mn levels and contributing to the growth of GAS. The maturation and proteolytic activity of streptococcal cysteine protease (SpeB), an important virulence factor in GAS, has been reported to be abrogated by zinc and copper. Zn inhibited the maturation and proteolytic activity of SpeB in the culture supernatant of the CzcD-deficient strain. Furthermore, Mn inhibited SpeB maturation and proteolytic activity in a MntE-deficient strain. Since the host pathogenicity of the SpeB-deficient strain was significantly reduced, maintenance of intracellular manganese and zinc levels in the GAS via MntE and CzcD may not only confer metal resistance to the bacterium, but may also play an essential role in its virulence. These findings provide new insights into the molecular mechanisms of pathogenicity, which allow pathogens to survive under stressful conditions associated with elevated metal ion concentrations during host infection.


Assuntos
Evasão da Resposta Imune , Streptococcus pyogenes , Animais , Camundongos , Streptococcus pyogenes/metabolismo , Metais/metabolismo , Zinco/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Cátions Bivalentes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
12.
J Biol Chem ; 299(9): 104927, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330175

RESUMO

Methicillin-resistant Staphylococcus aureus, or MRSA, is one of the major causative agents of hospital-acquired infections worldwide. Novel antimicrobial strategies efficient against antibiotic-resistant strains are necessary and not only against S. aureus. Among those, strategies that aim at blocking or dismantling proteins involved in the acquisition of essential nutrients, helping the bacteria to colonize the host, are intensively studied. A major route for S. aureus to acquire iron from the host organism is the Isd (iron surface determinant) system. In particular, the hemoglobin receptors IsdH and IsdB located on the surface of the bacterium are necessary to acquire the heme moiety containing iron, making them a plausible antibacterial target. Herein, we obtained an antibody of camelid origin that blocked heme acquisition. We determined that the antibody recognized the heme-binding pocket of both IsdH and IsdB with nanomolar order affinity through its second and third complementary-determining regions. The mechanism explaining the inhibition of acquisition of heme in vitro could be described as a competitive process in which the complementary-determining region 3 from the antibody blocked the acquisition of heme by the bacterial receptor. Moreover, this antibody markedly reduced the growth of three different pathogenic strains of MRSA. Collectively, our results highlight a mechanism for inhibiting nutrient uptake as an antibacterial strategy against MRSA.


Assuntos
Anticorpos Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Receptores de Superfície Celular , Anticorpos de Domínio Único , Humanos , Antibacterianos/farmacologia , Heme/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/uso terapêutico , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Antígenos de Bactérias/imunologia , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Camelídeos Americanos , Animais , Ligação Proteica/efeitos dos fármacos , Modelos Moleculares , Simulação de Dinâmica Molecular
13.
Chembiochem ; 24(14): e202300221, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37232370

RESUMO

Collimonas sp. (D-25), found in the soil of Akita Prefecture, is a gram-negative bacterium with the ability to synthesize gold nanoparticles (AuNPs). During the synthesis of AuNPs, one specific protein (DP-1) was found to have disappeared in the sonicated solution of the bacterium. Recombinant DP-1 (rDP-1) from Escherichia coli BL21 (DE3) was used to study the effect of DP-1 on the synthesis of AuNPs. AuNPs synthesized with rDP-1 result in small, stabilized nanoparticles. AuNPs synthesized by DP-1 retained the stability of both the dispersion and nano-size particles under high salt concentrations. Isothermal titration calorimetry was employed to investigate the bonding ratio of rDP-1 to AuNPs. Several thousand rDP-1 proteins are attached to the surface of an AuNP to form a protein corona containing multiple layers. These results suggest that DP-1 obtained from D-25 has a size and stability control function during AuNP synthesis.


Assuntos
Nanopartículas Metálicas , Coroa de Proteína , Ouro/química , Nanopartículas Metálicas/química , Bactérias/metabolismo , Tamanho da Partícula
14.
Biochem Biophys Res Commun ; 663: 54-60, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119766

RESUMO

Single-domain antibodies, or VHH, nanobodies, are attractive tools in biotechnology and pharmaceuticals due to their favorable biophysical properties. Single-domain antibodies have potential for use in sensing materials to detect antigens, and in this paper, we propose a generic design strategy of single-domain antibodies for the highly efficient use of immobilized antibodies on a sensing substrate. Amine coupling was used to immobilize the single-domain antibodies on the substrate through a robust covalent bond. First, for two model single-domain antibodies with lysines at four highly conserved positions (K48, K72, K84, and K95), we mutated the lysines to alanine and measured the binding activity of the mutants (the percentage of immobilized antibodies that can bind antigen) using surface plasmon resonance. The two model single-domain antibodies tended to have higher binding activities when K72, which is close to the antigen binding site, was mutated. Adding a Lys-tag to the C-terminus of single-domain antibodies also increased the binding activity. We also mutated the lysine for another model single-domain antibodies with the lysine in a different position than the four residues mentioned above and measured the binding activity. Thus, single-domain antibodies immobilized in an orientation accessible to the antigen tended to have a high binding activity, provided that the physical properties of the single-domain antibodies themselves (affinity and structural stability) were not significantly reduced. Specifically, the design strategy of single-domain antibodies with high binding activity included mutating the lysine at or near the antigen binding site, adding a Lys-tag to the C-terminus, and mutating a residue away from the antigen binding site to lysine. It is noteworthy that mutating K72 close to the antigen binding site was more effective in increasing the binding activity than Lys-tag addition, and immobilization at the N-terminus close to the antigen binding site did not have such a negative effect on the binding activity compared to immobilization at the K72.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Ressonância de Plasmônio de Superfície , Anticorpos Imobilizados/química , Anticorpos Imobilizados/metabolismo , Lisina , Biotecnologia , Antígenos
15.
Sci Rep ; 13(1): 6493, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081068

RESUMO

LI-cadherin is a member of the cadherin superfamily. LI-cadherin mediates Ca2+-dependent cell-cell adhesion through homodimerization. A previous study reported two single nucleotide polymorphisms (SNPs) in the LI-cadherin-coding gene (CDH17). These SNPs correspond to the amino acid changes of Lys115 to Glu and Glu739 to Ala. Patients with colorectal cancer carrying these SNPs are reported to have a higher risk of lymph node metastasis than patients without the SNPs. Although proteins associated with metastasis have been identified, the molecular mechanisms underlying the functions of these proteins remain unclear, making it difficult to develop effective strategies to prevent metastasis. In this study, we employed biochemical assays and molecular dynamics (MD) simulations to elucidate the molecular mechanisms by which the amino acid changes caused by the SNPs in the LI-cadherin-coding gene increase the risk of metastasis. Cell aggregation assays showed that the amino acid changes weakened the LI-cadherin-dependent cell-cell adhesion. In vitro assays demonstrated a decrease in homodimerization tendency and MD simulations suggested an alteration in the intramolecular hydrogen bond network by the mutation of Lys115. Taken together, our results indicate that the increased risk of lymph node metastasis is due to weakened cell-cell adhesion caused by the decrease in homodimerization tendency.


Assuntos
Neoplasias Colorretais , Polimorfismo de Nucleotídeo Único , Humanos , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/genética , Neoplasias Colorretais/patologia , Metástase Linfática/genética
16.
Polymers (Basel) ; 15(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050422

RESUMO

Medulloblastoma is a life-threatening disease with poor therapeutic outcomes. In chemotherapy, low drug accumulation has been a cause of these outcomes. Such inadequate response to treatments has been associated with low drug accumulation, particularly with a limited cellular uptake of drugs. Recently, the conjugation of drugs to ligand molecules with high affinity to tumor cells has attracted much attention for enhancing drug internalization into target cells. Moreover, combining tumor-targeting ligands with nano-scaled drug carriers can potentially improve drug loading capacity and the versatility of the delivery. Herein, we focused on the possibility of targeting CD276/B7-H3, which is highly expressed on the medulloblastoma cell membrane, as a strategy for enhancing the cellular uptake of ligand-installed nanocarriers. Thus, anti-CD276 antibodies were conjugated on the surface of model nanocarriers based on polyion complex micelles (PIC/m) via click chemistry. The results showed that the anti-CD276 antibody-installed PIC/m improved intracellular delivery into CD276-expressing medulloblastoma cells in a CD276-dependent manner. Moreover, increasing the number of antibodies on the surface of micelles improved the cellular uptake efficiency. These observations indicate the potential of anti-CD276 antibody-installed nanocarriers for promoting drug delivery in medulloblastoma.

17.
Sci Rep ; 13(1): 4033, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899059

RESUMO

In order to reduce infection risk of novel coronavirus (SARS-CoV-2), we developed nano-photocatalysts with nanoscale rutile TiO2 (4-8 nm) and CuxO (1-2 nm or less). Their extraordinarily small size leads to high dispersity and good optical transparency, besides large active surface area. Those photocatalysts can be applied to white and translucent latex paints. Although Cu2O clusters involved in the paint coating undergo gradual aerobic oxidation in the dark, the oxidized clusters are re-reduced under > 380 nm light. The paint coating inactivated the original and alpha variant of novel coronavirus under irradiation with fluorescent light for 3 h. The photocatalysts greatly suppressed binding ability of the receptor binding domain (RBD) of coronavirus (the original, alpha and delta variants) spike protein to the receptor of human cells. The coating also exhibited antivirus effects on influenza A virus, feline calicivirus, bacteriophage Qß and bacteriophage M13. The photocatalysts would be applied to practical coatings and lower the risk of coronavirus infection via solid surfaces.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Desnaturação Proteica , Glicoproteína da Espícula de Coronavírus/metabolismo
18.
J Nanobiotechnology ; 21(1): 36, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721182

RESUMO

BACKGROUND: Although a large amount of evidence has revealed that amyloid ß (Aß), especially Aß oligomers, protofibrils, and pyroglutamated Aßs, participate primarily in the pathophysiological processes of Alzheimer's disease, most clinical trials of anti-Aß antibody therapy have never acquired successful efficacy in human clinical trials, partly because peripheral administration of antibody medications was unable to deliver sufficient amounts of the molecules to the brain. Recently, we developed polymeric nanomicelles capable of passing through the blood-brain barrier that function as chaperones to deliver larger amounts of heavy molecules to the brain. Herein, we aimed to evaluate the efficacy of newly developed antibody 6H4 fragments specific to Aß oligomers encapsulated in polymeric nanomicelles on the development of Alzheimer's disease pathology in Alzheimer's disease model mice at the age of emergence of early Alzheimer's disease pathology. RESULTS: During the 10-week administration of 6H4 antibody fragments in polymeric nanomicelles, a significant reduction in the amounts of various toxic Aß species, such as Aß oligomers, toxic Aß conformers, and pyroglutamated Aßs in the brain was observed. In addition, immunohistochemistry indicated inhibition of diameters of Aß plaques, Aß-antibody immunoreactive areas, and also plaque core formation. Behavioral analysis of the mice model revealed that the 6H4 fragments-polymeric nanomicelle group was significantly better at maintaining long-term spatial reference memory in the probe and platform tests of the water maze, thereby indicating inhibition of the pathophysiological process of Alzheimer's disease. CONCLUSIONS: The results indicated that the strategy of reducing toxic Aß species in early dementia owing to Alzheimer's disease by providing sufficient antibodies in the brain may modify Alzheimer's disease progression.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Encéfalo , Barreira Hematoencefálica , Anticorpos , Placa Amiloide , Polímeros
19.
Cancer Sci ; 114(1): 321-338, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36136061

RESUMO

Important roles of humoral tumor immunity are often pointed out; however, precise profiles of dominant antigens and developmental mechanisms remain elusive. We systematically investigated the humoral antigens of dominant intratumor immunoglobulin clones found in human cancers. We found that approximately half of the corresponding antigens were restricted to strongly and densely negatively charged polymers, resulting in simultaneous reactivities of the antibodies to both densely sulfated glycosaminoglycans (dsGAGs) and nucleic acids (NAs). These anti-dsGAG/NA antibodies matured and expanded via intratumoral immunological driving force of innate immunity via NAs. These human cancer-derived antibodies exhibited acidic pH-selective affinity across both antigens and showed specific reactivity to diverse spectrums of human tumor cells. The antibody-drug conjugate exerted therapeutic effects against multiple cancers in vivo by targeting cell surface dsGAG antigens. This study reveals that intratumoral immunological reactions propagate tumor-oriented immunoglobulin clones and demonstrates a new therapeutic modality for the universal treatment of human malignancies.


Assuntos
Neoplasias , Ácidos Nucleicos , Humanos , Epitopos , Antígenos , Neoplasias/terapia , Anticorpos , Antígenos de Superfície , Concentração de Íons de Hidrogênio
20.
Clin Epigenetics ; 14(1): 147, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371227

RESUMO

BACKGROUND: Proline/arginine-rich end leucine-rich repeat protein (PRELP) is a member of the small leucine-rich proteoglycan family of extracellular matrix proteins, which is markedly suppressed in the majority of early-stage epithelial cancers and plays a role in regulating the epithelial-mesenchymal transition by altering cell-cell adhesion. Although PRELP is an important factor in the development and progression of bladder cancer, the mechanism of PRELP gene repression remains unclear. RESULTS: Here, we show that repression of PRELP mRNA expression in bladder cancer cells is alleviated by HDAC inhibitors (HDACi) through histone acetylation. Using ChIP-qPCR analysis, we found that acetylation of lysine residue 5 of histone H2B in the PRELP gene promoter region is a marker for the de-repression of PRELP expression. CONCLUSIONS: These results suggest a mechanism through which HDACi may partially regulate the function of PRELP to suppress the development and progression of bladder cancer. Some HDACi are already in clinical use, and the findings of this study provide a mechanistic basis for further investigation of HDACi-based therapeutic strategies.


Assuntos
Histonas , Neoplasias da Bexiga Urinária , Humanos , Histonas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Lisina/metabolismo , Glicoproteínas/genética , Acetilação , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Metilação de DNA , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...